Rustyice Solutions Blog
Read All About It

Search Our Site

Our Newsletter

Our Ramblings

Communications Satellites: Making the Global Village Possible

In 500 years, when humankind looks back at the dawn of space travel, Apollo’s landing on the Moon in 1969 may be the only event remembered. At the same time, however, Lyndon B. Johnson, himself an avid promoter of the space program, felt that reconnaissance satellites alone justified every penny spent on space. Weather forecasting has undergone a revolution because of the availability of pictures from geostationary meteorological satellites–pictures we see every day on television. All of these are important aspects of the space age, but satellite communications has probably had more effect than any of the rest on the average person. Satellite communications is also the only truly commercial space technology- -generating billions of pounds annually in sales of products and services.

The Billion Dollar Technology

In the autumn of 1945 an RAF electronics officer and member of the British Interplanetary Society, Arthur C. Clarke, wrote a short article in Wireless World that described the use of manned satellites in 24-hour orbits high above the world’s land masses to distribute television programs. His article apparently had little lasting effect in spite of Clarke’s repeating the story in his 1951/52 The Exploration of Space . Perhaps the first person to carefully evaluate the various technical options in satellite communications and evaluate the financial prospects was John R. Pierce of AT&T’s Bell Telephone Laboratories who, in a 1954 speech and 1955 article, elaborated the utility of a communications “mirror” in space, a medium-orbit “repeater” and a 24-hour-orbit “repeater.” In comparing the communications capacity of a satellite, which he estimated at 1,000 simultaneous telephone calls, and the communications capacity of the first trans-atlantic telephone cable (TAT-1), which could carry 36 simultaneous telephone calls at a cost of 30-50 million pounds, Pierce wondered if a satellite would be worth a billion pounds.

After the 1957 launch of Sputnik I, many considered the benefits, profits, and prestige associated with satellite communications. Because of Congressional fears of “duplication,” NASA confined itself to experiments with “mirrors” or “passive” communications satellites (ECHO), while the Department of Defense was responsible for “repeater” or “active” satellites which amplify the received signal at the satellite–providing much higher quality communications. In 1960 AT&T filed with the Federal Communications Commission (FCC) for permission to launch an experimental communications satellite with a view to rapidly implementing an operational system. The U.S. government reacted with surprise– there was no policy in place to help execute the many decisions related to the AT&T proposal. By the middle of 1961, NASA had awarded a competitive contract to RCA to build a medium-orbit (4,000 miles high) active communication satellite (RELAY); AT&T was building its own medium-orbit satellite (TELSTAR) which NASA would launch on a cost-reimbursable basis; and NASA had awarded a sole- source contract to Hughes Aircraft Company to build a 24-hour (20,000 mile high) satellite (SYNCOM). The military program, ADVENT, was cancelled a year later due to complexity of the spacecraft, delay in launcher availability, and cost over-runs.

By 1964, two TELSTARs, two RELAYs, and two SYNCOMs had operated successfully in space. This timing was fortunate because the Communications Satellite Corporation (COMSAT), formed as a result of the Communications Satellite Act of 1962, was in the process of contracting for their first satellite. COMSAT’s initial capitalization of 200 million dollars was considered sufficient to build a system of dozens of medium-orbit satellites. For a variety of reasons, including costs, COMSAT ultimately chose to reject the joint AT&T/RCA offer of a medium-orbit satellite incorporating the best of TELSTAR and RELAY. They chose the 24-hour-orbit (geosynchronous) satellite offered by Hughes Aircraft Company for their first two systems and a TRW geosynchronous satellite for their third system. On April 6, 1965 COMSAT’s first satellite, EARLY BIRD, was launched from Cape Canaveral. Global satellite communications had begun.

The Global Village: International Communications

Some glimpses of the Global Village had already been provided during experiments with TELSTAR, RELAY, and SYNCOM. These had included televising parts of the 1964 Tokyo Olympics. Although COMSAT and the initial launch vehicles and satellites were American, other countries had been involved from the beginning. AT&T had initially negotiated with its European telephone cable “partners” to build earth stations for TELSTAR experimentation. NASA had expanded these negotiations to include RELAY and SYNCOM experimentation. By the time EARLY BIRD was launched, communications earth stations already existed in the United Kingdom, France, Germany, Italy, Brazil, and Japan. Further negotiations in 1963 and 1964 resulted in a new international organization, which would ultimately assume ownership of the satellites and responsibility for management of the global system. On August 20, 1964, agreements were signed which created the International Telecommunications Satellite Organization (INTELSAT).

By the end of 1965, EARLY BIRD had provided 150 telephone “half- circuits” and 80 hours of television service. The INTELSAT II series was a slightly more capable and longer-lived version of EARLY BIRD. Much of the early use of the COMSAT/INTELSAT system was to provide circuits for the NASA Communications Network (NASCOM). The INTELSAT III series was the first to provide Indian Ocean coverage to complete the global network. This coverage was completed just days before one half billion people watched APOLLO 11 land on the moon on July 20, 1969.

Hello Guam: Domestic Communications

In 1965, ABC proposed a domestic satellite system to distribute television signals. The proposal sank into temporary oblivion, but in 1972 TELESAT CANADA launched the first domestic communications satellite, ANIK, to serve the vast Canadian continental area. RCA promptly leased circuits on the Canadian satellite until they could launch their own satellite. The first U.S. domestic communications satellite was Western Union’s WESTAR I, launched on April 13, 1974. In December of the following year RCA launched their RCA SATCOM F- 1. In early 1976 AT&T and COMSAT launched the first of the COMSTAR series. These satellites were used for voice and data, but very quickly television became a major user. By the end of 1976 there were 120 transponders available over the U.S., each capable of providing 1500 telephone channels or one TV channel. Very quickly the “movie channels” and “super stations” were available to most Americans. The dramatic growth in cable TV would not have been possible without an inexpensive method of distributing video.

The ensuing two decades have seen some changes: Western Union is no more; Hughes is now a satellite operator as well as a manufacturer; AT&T is still a satellite operator, but no longer in partnership with COMSAT; GTE, originally teaming with Hughes in the early 1960s to build and operate a global system is now a major domestic satellite operator. Television still dominates domestic satellite communications, but data has grown tremendously with the advent of very small aperture terminals (VSATs). Small antennas, whether TV-Receive Only (TVRO) or VSAT are a commonplace sight all over the country.

New Technology

The first major geosynchronous satellite project was the Defense Department’s ADVENT communications satellite. It was three-axis stabilized rather than spinning. It had an antenna that directed its radio energy at the earth. It was rather sophisticated and heavy. At 500-1000 pounds it could only be launched by the ATLAS- CENTAUR launch vehicle. ADVENT never flew, primarily because the CENTAUR stage was not fully reliable until 1968, but also because of problems with the satellite. When the program was canceled in 1962 it was seen as the death knell for geosynchronous satellites, three-axis stabilization, the ATLAS-CENTAUR, and complex communications satellites generally. Geosynchronous satellites became a reality in 1963, and became the only choice in 1965. The other ADVENT characteristics also became commonplace in the years to follow.

In the early 1960s, converted intercontinental ballistic missiles (ICBMs) and intermediate range ballistic missiles (IRBMs) were used as launch vehicles. These all had a common problem: they were designed to deliver an object to the earth’s surface, not to place an object in orbit. Upper stages had to be designed to provide a delta-Vee (velocity change) at apogee to circularize the orbit. The DELTA launch vehicles, which placed all of the early communications satellites in orbit, were THOR IRBMs that used the VANGUARD upper stage to provide this delta-Vee. It was recognized that the DELTA was relatively small and a project to develop CENTAUR, a high-energy upper stage for the ATLAS ICBM, was begun. ATLAS-CENTAUR became reliable in 1968 and the fourth generation of INTELSAT satellites used this launch vehicle. The fifth generation used ATLAS-CENTAUR and a new launch-vehicle, the European ARIANE. Since that time other entries, including the Russian PROTON launch vehicle and the Chinese LONG MARCH have entered the market. All are capable of launching satellites almost thirty times the weight of EARLY BIRD.

In the mid-1970s several satellites were built using three-axis stabilization. They were more complex than the spinners, but they provided more despun surface to mount antennas and they made it possible to deploy very large solar arrays. The greater the mass and power, the greater the advantage of three-axis stabilization appears to be. Perhaps the surest indication of the success of this form of stabilization was the switch of Hughes, closely identified with spinning satellites, to this form of stabilization in the early 1990s. The latest products from the manufacturers of SYNCOM look quite similar to the discredited ADVENT design of the late 1950s.

Much of the technology for communications satellites existed in 1960, but would be improved with time. The basic communications component of the satellite was the traveling-wave-tube (TWT). These had been invented in England by Rudoph Kompfner, but they had been perfected at Bell Labs by Kompfner and J. R. Pierce. All three early satellites used TWTs built by a Bell Labs alumnus. These early tubes had power outputs as low as 1 watt. Higher- power (50-300 watts) TWTs are available today for standard satellite services and for direct-broadcast applications. An even more important improvement was the use of high-gain antennas. Focusing the energy from a 1-watt transmitter on the surface of the earth is equivalent to having a 100-watt transmitter radiating in all directions. Focusing this energy on Western Europe. is like having a 1000-watt transmitter radiating in all directions. The principal effect of this increase in actual and effective power is that earth stations are no longer 100-foot dish reflectors with cryogenically-cooled maser amplifiers costing as much as £20 million to build. Antennas for normal satellite services are typically 15-foot dish reflectors costing £50,000. Our own customer premises antennas in use on our Apogee Internet Satellite Broadband service are 79cm in diameter and extremely low cost and none of this could be possible without the use of high gain antennas.

Mobile Services

In February of 1976 COMSAT launched a new kind of satellite, MARISAT, to provide mobile services to maritime customers. In the early 1980s Europe launched the MARECS series to provide the same services. In 1979 the UN International Maritime Organization sponsored the establishment of the International Maritime Satellite Organization (INMARSAT) in a manner similar to INTELSAT. INMARSAT initially leased the MARISAT and MARECS satellite transponders, but in October of 1990 it launched the first of its own satellites, INMARSAT II F-1. The third generation, INMARSAT III, has already been launched. An aeronautical satellite was proposed in the mid-1970s. A contract was awarded to General Electric to build the satellite, but it was cancelled. INMARSAT now provides this service. Although INMARSAT was initially conceived as a method of providing telephone service and traffic-monitoring services on ships at sea, it has provided much more. The journalist with a briefcase phone has been ubiquitous for some time, but the Gulf War brought this technology to the public eye.

Competition

In 1965, when EARLY BIRD was launched, the satellite provided almost 10 times the capacity of the submarine telephone cables for almost 1/10th the price. This price-differential was maintained until the laying of TAT-8 in the late 1980s. TAT-8 was the first fibre-optic cable laid across the Atlantic. Satellites are still competitive with cable for point-to-point communications, but the future advantage may lie with fiber-optic cable. Satellites still maintain two advantages over cable: they are more reliable and they can be used point-to-multi-point (broadcasting).

Cellular telphone systems have risen as challenges to all other types of telephony. It is possible to place a cellular system in a developing country at a very reasonable price. Long-distance calls require some other technology, but this can be either satellites or fibre-optic cable.

0 Comments

Leave a Reply

XHTML: You can use these tags: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

Do You Have a Tip or an Idea for a Story? Tell Us About It.

About Isotope

Isotope is available for purchase or part of a club membership from RocketTheme, inclusive of the RocketLauncher, theme, plugins and sources.

Subscribe Here

Subscribe to our newsletter and stay updated on the latest developments and special offers!